Investigating HII Regions in the Disk of NGC 7331 with the Circumgalactic H α Spectrograph

1	NAZENDE IPEK KERKESER (D, ¹ NICOLE MELSO (D, ¹ DAVID SCHIMINOVICH, ^{2,3} ERIKA HAMDEN (D, ¹ MEGHNA SITARAM (D, ^{2,3}
2	AND IGNACIO CEVALLOS-ALEMAN Universit
3	¹ Steward Observatory, University of Arizona, 933 N. Cherry Avenue, Tucson, AZ 85721, USA
4	² Department of Astronomy, Columbia University, 550 W. 120th Street MC 5246, New York, NY 10027, USA
5	³ Columbia Astrophysics Laboratory, Columbia University, 550 W. 120th St. MC 5247, New York, NY 10027, USA
6	⁴ Department of Physics, Columbia University, 538 W. 120th Street 704 Pupin Hall MC 5255, New York, NY 10027, USA
7	ABSTRACT
8	We investigate the ionized gas kinematics of HII regions in the disk of NGC 7331 using IFU data
9	collected with the Circumgalactic H α Spectrograph (CH α S). NGC 7331 is a well-studied nearby galaxy
10	with HII regions resolved by seeing-limited observations, making it ideally suited for this work. The
11	galaxy disk features vigorous star formation $(2.987 \text{ M}_{\odot} \text{ yr}^{-1})$, especially in the central ring of starburst
12	activity. Our catalog of > 150 HII regions is drawn from a large database of HII regions identified in
13	past literature, selecting regions well matched to our spatial resolution. Using this refined catalog, we
14	perform aperture photometry on the SIRTF Nearby Galaxies Survey (SINGS) narrowband $H\alpha$ images
15	of NGC 7331, extracting the H α luminosity L(H α) of 155 HII regions. We present corresponding
16	measurements of the average line-of-sight ionized gas velocity dispersion σ in these regions with CH α S.
17	High-resolution velocity and dispersion maps of the galactic disk are produced from the $CH\alpha S$ spectral
18	imaging, selecting spaxels with high signal-to-noise in order to measure velocity dispersions as low as
19	12 km s ⁻¹ . Our measurements of the L(H α), $\Sigma_{\rm SFR}$ and σ in NGC 7331 are consistent with spatially
20	resolved observations of HII regions in large surveys of nearby galaxies. We explore the L(H α) $-\sigma$
21	relationship, identifying turbulent HII regions with non-thermal dispersions likely driven by stellar
22	feedback. The dispersion is correlated with the star formation rate surface density, and using the
23	relation $\sigma \propto \epsilon \Sigma_{\rm SFR}^{\alpha}$, HII regions in NGC7331 are best fit by $\epsilon = 80$, $\alpha = 0.335$.

Keywords: HII regions, Interstellar line emission, Spectroscopy, Spiral galaxies 24

1. INTRODUCTION

25

HII regions are ionized pockets of gas within galax-26 27 ies, formed when intense radiation from young, mas-28 sive stars strips electrons from surrounding hydrogen 29 atoms. These regions serve as vital tracers of recent 30 star formation and provide key insights into the in-³¹ teraction between stellar feedback and the interstellar ³² medium (ISM). The ISM across redshifts is superson-³³ ically turbulent (Glazebrook 2013; Übler et al. 2019; ³⁴ Bacchini et al. 2020; Rizzo et al. 2024), driven by a 35 combination of interal and external processes includ-³⁶ ing stellar feedback (winds, supernovae), gravitational 37 and magnetic instabilities, galactic shear, and accretion ³⁸ (Elmegreen & Scalo 2004; Glazebrook 2013, & refer-³⁹ ences therein). Turbulence in the interstellar medium 40 plays a crucial role in regulating star formation, pro-⁴¹ viding global pressure support that counteracts gravity ⁴² while also creating perturbations that provoke small-

⁴³ scale collapse (Mac Low & Klessen 2004). Turbulent ⁴⁴ motions in the ISM are observationally probed using ⁴⁵ the gas velocity dispersion, with many studies finding ⁴⁶ a positive correlation between gas dispersion and star ⁴⁷ formation rate (Lehnert et al. 2009, 2013; Green et al. ⁴⁸ 2010, 2014; Le Tiran et al. 2011; Moiseev et al. 2015). ⁴⁹ This relationship has been studied extensively in high-⁵⁰ redshift galaxies and local luminous and ultraluminous ⁵¹ infrared galaxies (LIRGs/ULIRGs) with high star for-52 mation rates and large gas dispersions (e.g. Bellocchi 53 et al. 2013; Green et al. 2014; Arribas et al. 2014; Ubler ⁵⁴ et al. 2019; Perna et al. 2022) where gravitational in-⁵⁵ stability, gas transport, and external accretion likely ⁵⁶ contribute significantly to turbulence (Krumholz et al. 57 2018; Ginzburg et al. 2022; Mai et al. 2024). Galaxies s with lower star formation rates around a few M_{\odot} yr⁻¹ ⁵⁹ may straddle the boundary between gravity-driven tur-60 bulence and stellar feedback-driven models where the ⁶¹ the ionized gas dispersions are dominated by the internal motions of the HII regions, highlighting the importance of spatially resolved datasets in this regime at
low-redshifts (Krumholz & Burkhart 2016). While the
connection between gas dispersion and star formation
rate is well-established in statistical samples, star formation environments can vary drastically within individual
galaxies. Case studies in galaxies with spatially varying
star formation environments are crucial to understanding the role turbulence plays in regulating star formation
in diverse environments across the galactic disk.

NGC 7331 provides an interesting mixture of environ-72 73 ments for investigating the relationship between star for-74 mation and ISM gas kinematics, aided by its close prox-⁷⁵ imity (14.5 Mpc, Freedman et al. 2001) and its exten-⁷⁶ sive observation history. Comprehensive observations 77 across wavelengths have identified distinct morphologi-78 cal features in NGC 7331. The galactic disk is bright in ⁷⁹ H α emission and hosts a large population of HII regions 80 (Rubin et al. 1965; Hodge & Kennicutt 1983; Marcelin ⁸¹ et al. 1994; Petit 1998). A central ring of dust and gas ⁸² in the disk of NGC 7331 is seen prominently in CO ⁸³ (Young & Scoville 1982), HI (Bosma 1978), IR (Teleset sco et al. 1982; Regan et al. 2004), and H α (Battaner ⁸⁵ et al. 2003). This ring exhibits starburst activity and ⁸⁶ hosts a significant fraction of the star formation occur-⁸⁷ ring in the galaxy (Battaner et al. 2003; Thilker et al. ⁸⁸ 2007). Some kinematic studies of NGC 7331 suggest a ⁸⁹ counter-rotating bulge relative to the disk (Prada et al. ⁹⁰ 1996), and peculiar velocities at the inner boundary of ⁹¹ the central ring are consistent with ionized gas inflow ⁹² (Battaner et al. 2003). A large-scale warp in the HI gas ⁹³ distribution (Bosma 1978), an extended distribution of ⁹⁴ debris/plumes/streams surrounding the galaxy, as well 95 as a a large population of dwarf companions, all sug-⁹⁶ gest a history of mergers and tidal interactions (Ludwig 97 et al. 2012; Blauensteiner et al. 2017). Complex ve-⁹⁸ locity structure and morphology combined with active ⁹⁹ star formation in NGC 7331 provides an ideal setting 100 for studying how star formation influences and is influ-¹⁰¹ enced by gas kinematics at moderate spatial resolution. A seeing-limited spatial resolution of 2'' corresponds to 102 ¹⁰³ a physical scale of approximately 150 pc in the disk of ¹⁰⁴ NGC 7331, allowing detailed resolution of individual HII ¹⁰⁵ regions. The HII regions studied in this work have a ra-¹⁰⁶ dius of 173 pc on average.

¹⁰⁷ We present new maps of the complex kinematics in the ¹⁰⁸ disk of NGC 7331 using the Circumgalactic H α Spec-¹⁰⁹ trograph (CH α S, Melso et al. 2022). CH α S is an ad-¹¹⁰ vanced integral field spectrograph optimized for map-¹¹¹ ping the spatial and kinematic structure of faint, ion-¹¹² ized gas. With a resolving power of $R \sim 10,000$, a field ¹¹³ of view of $10' \times 10'$, and high sensitivity to very faint ¹¹⁴ emission, $CH\alpha S$ can capture spectral images of nearby ¹¹⁵ galaxy disks at high signal-to-noise with superb survey ¹¹⁶ speed. Integral field spectroscopy (IFS) is a crucial ob-¹¹⁷ servational technique for establishing large catalogs of ¹¹⁸ resolved HII regions in nearby galaxies and probing the ¹¹⁹ properties of these regions in great detail (e.g., Sánchez 120 et al. 2012; Espinosa-Ponce et al. 2020; McLeod et al. 121 2020; Cosens et al. 2022; Congiu et al. 2023; Groves et al. 122 2023; Rickards Vaught et al. 2024). CH α S excels in this ¹²³ regard, efficiently surveying the low-redshift universe by 124 slicing the wide field of view into tens of thousands of 125 spectra collected simultaneously at moderate spectral ¹²⁶ resolution around a single emission line. $CH\alpha S$ is ca-¹²⁷ pable of detecting high-surface-brightness H α emission 128 from HII regions in the galactic disk in a 6-minute ex-129 posure, and it can measure faint emission down to 1 ¹³⁰ Rayleigh from diffuse gas at the disk-halo interface in ¹³¹ just a few hours (Melso et al. 2022). En-route to ultra-132 deep observations probing the diffuse outskirts of galax-¹³³ ies, $CH\alpha S$ will provide detailed spatial and kinematic 134 characterization of the dense interstellar medium. The ¹³⁵ maps of NGC 7331 presented in this work are an early ¹³⁶ demonstration of the full observing power of Ch α S.

In this work, we examine the kinematics of HII re-138 gions across the disk of NGC 7331, focusing on the rela-139 tionship between H α luminosity and ionized gas velocity 140 dispersion (σ). In Section 2, we present the photometric 141 and spectroscopic datasets used in this study, along with 142 the data acquisition and reduction procedures. Section 143 3 details the methodology for selecting the HII region 144 catalog, including the criteria applied to identify and 145 characterize the regions. In Section 4 we investigate the 146 ionized gas morphology and discuss the analysis of the 147 H α luminosity and velocity dispersion relationship. In 148 Section 5, we interpret our findings in the context of ex-149 isting literature and theoretical models, and Section 6 150 concludes the paper with a summary of key results and 151 directions for future research.

2. OBSERVATIONS

152

159

This work relies on a combination of photometric and spectroscopic datasets, detailed below. NGC 7331 has a wealth of multi-wavelength observations, and many of these datasets have aided our analysis. Here we map the spatio-kinematic structure of ionized gas throughout the galactic disk of NGC 7331 in great detail.

2.1. $CH\alpha S$ Observations

¹⁶⁰ Spectroscopic data was collected with the re-¹⁶¹ cently commissioned Circumgalactic H α Spectrograph ¹⁶² (CH α S). The entrance to the IFS is a microlens array, ¹⁶³ which segments the telescope focal plane into > 60,000 ¹⁶⁴ spectra, each dispersed over a narrow bandpass to avoid ¹⁶⁵ overlap. CH α S is optimized for mapping the spatial and ¹⁶⁶ kinematic structure of ultra-faint ionized gas, so it can ¹⁶⁷ easily detect high H α surface brightness HII regions in ¹⁶⁸ the disks of nearby galaxies and resolve complex mor-¹⁶⁹ phology that can be difficult to fully capture with long-¹⁷⁰ slit spectroscopy. See Melso et al. (2022) for a detailed ¹⁷¹ description of the instrument.

In Figure 1 we present spectral imaging of NGC 7331 172 ¹⁷³ in Ha emission. A summary of the $CH\alpha S$ observations ¹⁷⁴ is given in Table 1. This data was collected during the 175 Fall of 2023, under very dark, photometric conditions $_{176}$ with < 2% Moon illumination and $> 125^{\circ}$ Moon sep-177 aration. The stack shown in Figure 1 consists of 360s 178 exposures co-aligned and co-added to create a two-hour 179 integration. The narrowband filter combination used for ¹⁸⁰ these observations has a bandpass of 20 Å FWHM and a ¹⁸¹ central wavelength of 6582 Å. Accordingly, this filter set 182 is best suited for radial velocities ranging from 412 km $_{183}$ s⁻¹ to 1323 km s⁻¹. The systemic velocity of NGC 7331 $_{184}$ (V_{sys} = 816 km s⁻¹) is near the center of the filter band-185 pass, and the galaxy HI line width at 20% of the maxi-186 mum intensity ($W_{20} = 530 \text{ km s}^{-1}$) falls within the filter 187 FWHM (Tully 1988; de Vaucouleurs et al. 1991). This 188 filter combination isolates the H α emission line and re-¹⁸⁹ jects contamination from the NII doublet (6573 Å, 6608 ¹⁹⁰ Å). The bandpass still includes emission from the sky ¹⁹¹ background, notably the bright OH 6-1P1e,1f (4.5) tel-¹⁹² luric line (unresolved doublet) at 6578 Å (Osterbrock 193 et al. 1996).

194

210

2.2. Ancillary Data

This work utilizes multi-wavelength observations of 195 ¹⁹⁶ NGC 7331, including the narrowband H α imaging from ¹⁹⁷ the SIRTF Nearby Galaxies Survey (SINGS) (Kennicutt et al. 2003; SINGS Team 2020). HII region flux 198 ¹⁹⁹ estimates were derived using the corrected SINGS NGC 7331 H α map published in Leroy et al. (2012). This map 200 has been corrected for NII contamination and Galactic 201 202 extinction, and the integrated flux has been matched to ²⁰³ values in the literature. The HI 21cm velocity field (mo-²⁰⁴ ment 1) from The HI Nearby Galaxy Survey (THINGS) (Walter et al. 2008) was used as a reference to create the $CH\alpha S$ velocity map. We also compare with the 206 ²⁰⁷ BIMA Survey of Nearby Galaxies (BIMA SONG) CO $_{208}$ (1-0) map (Helfer et al. 2003) in order to identify HII ²⁰⁹ regions located within the gaseous inner ring.

3. METHODS

We detail the methods for extracting kinematic and photometric properties of HII regions from both the 213 CH α S and SINGS data.

3.1. CHaS Data Reduction

214

254

The stack shown in Figure 1 was created by align-215 ²¹⁶ ing and averaging multiple exposures, all taken within ²¹⁷ the same night (See Table 1). The drift between ex-²¹⁸ posures was calculated using the cross-correlation in a ²¹⁹ high signal-to-noise patch of the disk, and the image ²²⁰ registration was performed to sub-pixel precision. The ²²¹ World Coordinate System (WCS) applied to the CH α S $_{222}$ data is centered on the wavelength of H α at the systemic ²²³ velocity of NGC 7331 adjusted for the heliocentric ve-²²⁴ locity correction. This solution ensures the best average $_{225}$ alignment between the CH α S spectral imaging in H α $_{226}$ emission and narrowband H α imaging from other sur- $_{227}$ veys. The stacked CH α S data still contains the bright ²²⁸ telluric line at 6578 Å. Due to the repeating grid na- $_{229}$ ture of the CH α S spectra, it is important to remove this $_{230}$ line, as it fully overlaps H α emission from ionized gas $_{231}$ at 685 km s⁻¹ and 1180 km s⁻¹ and partially overlaps 232 emission at multiple intermediate velocities within the 233 bandpass. We collect separate sky data at a pointing 234 offset from NGC 7331 and use that sky stack to cre-²³⁵ ate the background subtracted image shown in Figure ²³⁶ 1. Since the absolute flux measurements are done using ²³⁷ the SINGS H α data (see Section 3.4) we do not apply $_{238}$ a flux calibration to the CH α S data in this work. We 239 do correct by an average flat field in order to ensure $_{240}$ that relative measurements across the CH α S stack are 241 consistent. Throughout this work in order to convert $_{\rm 242}$ from pixels to km $\rm s^{-1}$ we use the CHaS linear dispersion ²⁴³ mapping. The CH α S linear dispersion varies along the ²⁴⁴ spectral direction; however, the major axis of NGC 7331 ²⁴⁵ is aligned with the cross-spectral direction and variation 246 in the linear dispersion across the disk is a very small $_{247}$ effect on the order of $< 1 \text{ km s}^{-1}$ error. We extract and ²⁴⁸ average the linear dispersion values at lenslet positions ²⁴⁹ that cover the disk of NGC 7331, resulting in an average $_{250}$ linear dispersion of 0.37 Å pix⁻¹ or 16.86 km s⁻¹ pix⁻¹ $_{251}$ used in this work. The CH α S data reduction pipeline ²⁵² is a work in progress (see updates in Cevallos-Aleman 253 et al. 2024).

3.2. $CH\alpha S$ Spectral Extraction and Fitting

²⁵⁵ The CH α S field of view consists of > 60,000 spec-²⁵⁶ tra, one for each lenslet in the microlens array. NGC ²⁵⁷ 7331 covers approximately 3000 lenslets, and ~ 1400 of ²⁵⁸ the spectra extracted from these lensets meet our SNR ²⁵⁹ requirements. We extract these spectra using rectan-²⁶⁰ gular apertures centered on the detected H α emission, ²⁶¹ collapsing each spectrum along the cross-spectral direc-²⁶² tion to improve the S/N. The mean (velocity centroid) ²⁶³ and standard deviation (dispersion) are calculated from ²⁶⁴ the 1D Gaussian fit to the H α emission line in each spec²⁶⁵ trum. All lines were fit as a single component (one mean ²⁶⁶ velocity peak with a single dispersion value). We cal-²⁶⁷ culate the Doppler shift of the H α emission line and ²⁶⁸ the corresponding ionized gas velocity by measuring the ²⁶⁹ offset between the H α emission line peak and the peak ²⁷⁰ emission from the stationary telluric line in the sky back-²⁷¹ ground image. The standard deviation of the 1D Gaus-²⁷² sian fit to each H α emission line is the the observed dis-²⁷³ persion (σ_{obs}). We subtract the instrument line profile ²⁷⁴ (σ_{inst}) from the observed dispersion (σ_{obs}) in quadra-²⁷⁵ ture. We similarly correct for thermal broadening at ²⁷⁶ a gas temperature of 10⁴ K ($\sigma_b = 9.1$ km s⁻¹) (Rozas ²⁷⁷ et al. 2000). The line-of-sight ionized gas dispersion cal-²⁷⁸ culation used in this work follows Equation 1.

279
$$\sigma = \sqrt{(\sigma_{obs})^2 - (\sigma_{inst})^2 - (\sigma_b)^2}$$
(1)

We note that in theory we should also correct for the 280 natural line width of H α emission ($\sigma_N = 3 \text{ km s}^{-1}$); 281 282 however, the instrument line profile is measured by stacking the sky spectra extracted from each lenslet and 283 ²⁸⁴ fitting the OH 6-1P1e,1f (4.5) telluric line with a 1D 285 Gaussian. Accordingly, the measured instrument dispersion is convolved with the intrinsic width of the OH 286 6-1P1e,1f (4.5) telluric line. We assume that the intrin-287 sic width of this telluric line is on the order of the natural 288 289 line width of H α emission and is already accounted for ²⁹⁰ in our correction for the instrument line-spread function. The instrument line profile derived from the 1D Gaus-291 ²⁹² sian fit to the stacked sky background line is shown in ²⁹³ Figure 2. While fitting calibration lamp data would be ²⁹⁴ higher signal-to-noise, a single lamp exposure underes-²⁹⁵ timates the instrument profile as it does not include the ²⁹⁶ jitter introduced in the observation and stacking.

297

$$\mathrm{SNR}_{\mathrm{obs}} = \mathrm{SNR} \left(\sigma_{\mathrm{inst}}^2 / \sigma^2 + 1 \right)$$

To ensure small velocity dispersions below the instru-298 ment resolution are measured reliably, we select a signal 299 to noise cut on our observations (SNR_{obs}) such that in-300 trinsic dispersion measurements (σ) are made with SNR 301 $\sigma/\delta\sigma = 3$. The observed signal-to-noise (SNR_{obs}) 302 =required to reach an intrinsic dispersion measurement 303 with an SNR of 3 is given by Equation 2 (derived in 304 Zhou et al. (2017)). Measuring gas dispersions dom-305 306 inated by thermal broadening and natural line width $(\sigma = \sim 12 \; \rm km \; s^{-1})$ with a SNR of 3 requires an observa-307 ³⁰⁸ tional cut of SNR_{obs} = $3(\frac{19.02^2}{12^2} + 1) \approx 10$. A conserva-³⁰⁹ tive noise estimate is determined by selecting regions in 310 the outskirts of the background subtracted image and ³¹¹ creating a histogram of summed counts in a rolling rectangular aperture with dimensions (w,h) = (5,4) pixels. ³¹³ This aperture size corresponds to emission with a veloc- $_{314}$ ity width of 64 km s⁻¹, on par with the broadest spectra

Table 1: NGC 7331 CH α S observational summary

Parameter	Value	Comment
Observation Summary		
Right Ascension (α)	22:37:04	FOV Center
Declination (δ)	+34:24:56	FOV Center
Distance	$14.5 \mathrm{Mpc}$	$14.7{\pm}0.6$
Systemic (V_{Hel})	$816\pm1~{\rm km~s^{-1}}$	
Exposure Time	360 s	per frame
Total Integration	2.1 hrs	21 frames
Moon Illumination	< 2%	
Moon Separation	$> 125^{\circ}$	
Dates	19 Oct 2023	
Heliocentric Correction	29.54 km s^{-1}	
Instrument Settings		
Field of View	$10' \times 10'$	
Spatial Resolution	2.8''	
Spectral Resolution $(\Delta \lambda)$	$0.67 \ {\rm \AA}$	
Central Wavelength (λ)	6582 Å	
Bandpass (FWHM)	20 Å	

³¹⁵ seen in the disk NGC 7331. The signal is extracted in ³¹⁶ identical apertures. While the maps presented in Figure ³¹⁷ 3 and Figure 4 use an observed signal to noise cut of ³¹⁸ SNR> 3, the dispersion measurements in Figure 5 and ³¹⁹ Table 2 use an observed signal to noise cut of SNR> 10 ³²⁰ in order to achieve a 3σ measurement of dispersions be-³²¹ low the instrument resolution (down to 12 km s⁻¹).

3.3. HII Region Selection

322

(2)

The full catalog of HII regions used in this work is pre-323 ³²⁴ sented in Table 2. The apertures selected are taken from $_{325}$ the Petit (1998) [P98] catalog, the Marcelin et al. (1994) 326 catalog, and the Hodge & Kennicutt (1983) [HK83] cat-³²⁷ alog of HII regions in NGC 7331. We keep the litera-328 ture IDs for reference, but note that the apertures used 329 may not be positioned exactly as originally intended, 330 and any reproductions of this work should rely on the ³³¹ J2000 coordinates provided in Table 2. A 2D Gaus-332 sian was fit to each region, and small adjustments on 333 the order of a few arcseconds were made to the region ³³⁴ centroids. The HK83 coordinates were shifted by up to $_{335} \sim \pm 4$ arcsec in order to match HII regions in the SINGS $_{336}$ H α image. This offset is due to a combination of fac-337 tors including the distortion error associated with the 338 0.9-m plates used to construct this catalog (Hodge & ³³⁹ Kennicutt 1983) and differences in blending/resolution ³⁴⁰ between the HK83 and SINGS imaging. We remove re-

Figure 1: Comparison of CHaS (left) and SINGS (right) images, each overlaid with our catalog of 155 optimized regions represented by 3-sigma radius circles. The regions in the CHaS image have been adjusted based on our high-resolution velocity map to account for spectral shifts and the unique morphology of the lenslets within each region.

372

³⁴¹ gions that are now known stars as well as regions that ³⁴² are contaminated by their proximity to known stars. ³⁴³ We also make a cut to only include regions that have a ₃₄₄ FWHM of > 4'', ensuring they are well-matched to our ³⁴⁵ spatial resolution. These regions do not require aperture 346 corrections, as they are resolved by the seeing-limited ³⁴⁷ PSF ($\sim 1'' - 2''$) of the SINGS H α images (Murphy 348 et al. 2018). The HII regions that remain after this $_{349}$ cut are also spatially resolved in the CH α S data, cov-³⁵⁰ ering at least two lenslets. Finally, we visually inspect ³⁵¹ all apertures and make a last round of cuts to minimize ³⁵² crowding, reduce the number of blended regions, and remove regions impacted by artifacts such as saturated or 353 over-subtracted pixels. 354

3.4. SINGS Aperture Photometry

355

We perform aperture photometry to extract flux val-³⁵⁷ ues from the SINGS data in the apertures shown in Fig-³⁵⁸ ure 1. We chose an aperture radius corresponding to ³⁵⁹ the effective radius ($r_{eff} = \sqrt{2 \ln 2\sigma_x \sigma_y}$), calculated us-³⁶⁰ ing the 2D Gaussian fit for each region. The calibration ³⁶¹ uncertainty is taken to be $\approx 10\%$ of the flux (DR5 Data ³⁶² Delivery Document). The calibration uncertainty domi-³⁶³ nates over the background error estimated near the edge ³⁶⁴ of the image, so we assume a 10% flux error on the values ³⁶⁵ quoted in Table 2.

4. RESULTS

We report on the ionized gas morphology, luminosity, and kinematics in the disk of NGC 7331. We use these resolved measurements to explore the luminositydispersion relation for our sample of HII regions derot scribed above.

4.1. Ionized Gas Morphology

As shown in Figure 1 the ionized gas morphology seen are in the CH α S spectral imaging is consistent with the structure seen in the SINGS narrowband imaging. Stars

Figure 2: CH α S instrument profile derived from the stacked sky background line in more than 3000 spectra. The instrument dispersion measured from the Gaussian fit shown here is convolved with the (much narrower) intrinsic width of the OH 6-1P1e,1f (4.5) telluric line.

 $_{376}$ in the CH α S image are dispersed and appear as bright 377 continuum spectra shortened by the narrow bandpass 378 filter. The LINER nucleus (Cowan et al. 1994) is sur-³⁷⁹ rounded by faint H α emission which abruptly increases ³⁸⁰ in brightness due to starburst activity in the inner ring (Battaner et al. 2003). This bright $H\alpha$ emission is coinci-381 dent with HI (Bosma 1978) and CO (Young & Scoville 382 ³⁸³ 1982) observations of the ring. The outer disk of the ₃₈₄ galaxy is also bright in discrete H α emission. The HII ³⁸⁵ regions in our catalog are spread throughout the galactic disk. They range in size from approximately 350 pc 386 700 pc. We note that this is not an exhaustive cata-387 ³⁸⁸ log. We leave for future work an algorithmic detection of HII regions (e.g., Sánchez et al. 2012; Espinosa-Ponce 389 ³⁹⁰ et al. 2020; Congiu et al. 2023) which could be applied to a larger sample of galaxies observed during the $CH\alpha S$ 391 ommissioning and early science campaigns. \mathbf{c} 392

4.2. Ionized Gas Luminosity

The H α luminosity values for HII regions measured in NGC 7331 range from 37.73 < Log(L_{H α}) < 39.16. The median luminosity of 1 × 10³⁸ erg s⁻¹ cm⁻¹ corresponds to Q₀ = 7.7 × 10⁴⁹ ionizing photons, equivalent to approximately 2 O5 stars, 6 O7 stars, or 21 O9 stars (Table 2.3 in Osterbrock (1974)). Accordingly, the median stellar mass of these regions ranges from 100 M_{\odot} – 1000 M_{\odot} (assuming an O star mass of 50 M_{\odot}). The H α luminosity measurements presented in Table 2 are converted to a star formation rate using the prescription in Calzetti 404 (2013). The total integrated H α luminosity summed ⁴⁰⁵ across all of the the selected HII regions corresponds to ⁴⁰⁶ a SFR of 0.277 M_{\odot} yr⁻¹, accounting for about 10% of ⁴⁰⁷ the total SFR in NGC 7331 (2.987 M_{\odot} yr⁻¹) (Leroy ⁴⁰⁸ et al. 2008). Bright regions are distributed throughout ⁴⁰⁹ the disk, but almost all HII regions in the inner ring ⁴¹⁰ occupy the high end of the luminosity distribution.

4.3. Resolved Ionized Gas Kinematics

411

⁴¹² Maps of the ionized gas velocity and dispersion are ⁴¹³ made following the spectral fitting procedure described ⁴¹⁴ in Section 3.2. The ionized gas velocity map shown in ⁴¹⁵ the left panel of Figure 3 recovers the expected clock-⁴¹⁶ wise rotation of the galactic disk seen in HI (Walter ⁴¹⁷ et al. 2008; Schmidt et al. 2016). This velocity map is ⁴¹⁸ well-matched to prior measurements of the ionized gas ⁴¹⁹ velocity traced by Doppler shifted H α emission shown ⁴²⁰ in Marcelin et al. (1994); Daigle et al. (2006). We ex-⁴²¹ tend the velocity map to include the high-velocity (red-⁴²² shifted) edge of the galactic disk that is out of the band-⁴²³ pass in previous datasets.

We compare the ionized gas velocity with the neutral 424 425 gas velocity measured in HI 21 cm emission. The HI ⁴²⁶ velocity field extracted in each lenslet is shown in the ⁴²⁷ left panel of Figure 4. In the right panel of Figure 4 ⁴²⁸ we calculate the residual offset between the ionized gas ⁴²⁹ velocity measured from $H\alpha$ emission and the neutral gas 430 velocity measured from HI 21cm emission. In order to ⁴³¹ interpolate over nan values in the large beam size of HI ⁴³² velocity (moment 1) map, we apply small scale median 433 filtering and Gaussian convolution. As a result, the HI ⁴³⁴ velocity map is slightly smoothed. A few spurious val-⁴³⁵ ues remain in the final HI velocity map that propagate 436 to the residual, but these are easily disregarded when 437 examining the two maps by eye. Small residuals on the $_{438}$ order of ± 25 km s⁻¹ (one pixel in the CH α S spectra) ⁴³⁹ are within our absolute velocity error bars. Larger resid-440 uals, especially those that are spatially coherent over 441 many lenslets, are likely the result of resolution differ-442 ences (beam smearing) or variation in the neutral and ⁴⁴³ excited gas distributions; however, follow-up analysis is ⁴⁴⁴ needed to determine if these features may be due to non-445 rotational, peculiar gas motions. Prominent differences ⁴⁴⁶ in the velocity map include the redshifted patch in the ⁴⁴⁷ outer north-west spiral arms and the central asymmetric 448 bi-conical region of high velocity residual aligned with ⁴⁴⁹ the inner gas ring (CO contours overlaid on Figure 4). The line-of-sight ionized gas velocity dispersion (σ) is 450

⁴⁵⁰ The line-of-sight ionized gas velocity dispersion (σ) is ⁴⁵¹ shown in the right panel of Figure 3. This map was ⁴⁵² created using the spectral fitting procedure described ⁴⁵³ in Section 3.2. We correct the measured dispersion for ⁴⁵⁴ the instrument profile and thermal broadening. The re-⁴⁵⁵ maining quantity is the non-thermal line-of-sight ionized

Figure 3: Kinematic measurements derived from the CH α S integral field spectroscopy. In all panels the coordinate system has been rotated (15°) in order to align the hexagonally packed spectra along the Cartesian y-axis. The transformed coordinates can be compared directly with Figure 1. We apply a SNR cut, only displaying detections in lenslets with SNR ≥ 3 . The X marker denotes the galactic center coordinates. The individual panel descriptions are as follows: (left) absolute velocity measured in each CH α S lenslet (right) line-of-sight ionized gas velocity dispersion measured in each CH α S lenslet.

⁴⁵⁶ gas velocity dispersion referred to as velocity dispersion ⁴⁵⁷ throughout the rest of the text. Since all spectra were ⁴⁵⁸ fit as a single emission line component, this analysis ⁴⁵⁹ does not account for nonsymmetric features in the line ⁴⁶⁰ profiles or for multiple peaks from additional resolved ⁴⁶¹ velocity components. The average velocity dispersion ⁴⁶² across all measured spaxels (with an SNR cut of 10) is ⁴⁶³ 20.6±4.7 km s⁻¹, and the (slightly lower) median disper-⁴⁶⁴ sion across all spaxels is 19.7 km s⁻¹. In the outskirts of ⁴⁶⁵ the galactic disk measured velocity dispersions are at or ⁴⁶⁶ near at the thermal dispersion limit. Patches of low dis-⁴⁶⁷ persion that overlap the right inner region of the galaxy ⁴⁶⁸ may be part of a spiral arm seen in projection, ending ⁴⁶⁹ in the north of the galaxy. The presence of a complex ⁴⁷⁰ warp in NGC 7331 has already been inferred on large ⁴⁷¹ scales from the HI distribution and velocity field and ⁴⁷² Bosma (1981) uses the HI velocity field to suggest that ⁴⁷³ the northern arm is warped out of the plane. Evidence ⁴⁷⁴ of a warp is also seen in the inner disk from a gradient in ⁴⁷⁵ rotation speed between the stars and emission line gas ⁴⁷⁶ (Bottema 1999). We discuss sources of confusion and ⁴⁷⁷ contamination in these kinematic maps in Section 5.2.

4.4. Luminosity-Dispersion Relation

In Figure 5 we show the observed L- σ relation for our selected HII regions in NGC 7331, plotting the H α lumi-

Figure 4: Kinematic measurements derived from the CH α S integral field spectroscopy. In all panels the coordinate system has been rotated (15°) in order to align the hexagonally packed spectra along the Cartesian y-axis. The transformed coordinates can be compared directly with Figure 1. We apply a SNR cut, only displaying detections in lenslets with SNR ≥ 3 . The X marker denotes the galactic center coordinates. The individual panel descriptions are as follows: (left) HI 21cm moment 1 velocity field from The HI Nearby Galaxy Survey (THINGS) (Walter et al. 2008). This data has been extracted in regions corresponding to each CH α S lenslet (right) Residual offset between the H α velocity map and the HI velocity map. The gray contours correspond to the inner gas ring seen in the BIMA SONG CO (1-0) intensity map.

⁴⁸¹ nosity of the HII regions as a function of their average ⁴⁸² ionized gas velocity dispersion. We only include HII re-⁴⁸³ gions with non-thermal motions, meaning those above ⁴⁸⁴ a threshold of $\sigma > \sqrt{\sigma_N^2 + \sigma_b^2}$ or $\sigma > 12$ km s⁻¹. We ⁴⁸⁵ calculate both the average velocity dispersion and the ⁴⁸⁶ average velocity dispersion weighted by the H α inten-⁴⁸⁷ sity. However, since the H α intensity within each region ⁴⁸⁸ does not vary drastically, this weighting does not change ⁴⁸⁹ the result significantly and the average velocity disper-⁴⁹⁰ sion shown in Figure 5 is unweighted. The HII region properties measured in NGC 7331 are consistent with spatially resolved observations of HII regions in large surveys of nearby galaxy disks. In the top panel of Figure 5 we compare with HII regions in the PHANGS-MUSE nebular catalog (Congiu et al. 2023; Groves et al. 2023). Similar to NGC 7331, a few galaxies in the PHANGS-MUSE survey also have nuclear star forming rings. The blue markers overplotted are HII regions in the nuclear star forming ring of NGC 4321, NGC 500 3351, and NGC 1672. In order to ensure a direct comparison, we subtract the natural line width and thermal ⁵⁰² broadening (in quadrature) from the MUSE H α disper-⁵⁰³ sion measurements and apply a radius cut of 2" to match ⁵⁰⁴ the resolution of our data. The L- σ distribution of HII ⁵⁰⁵ regions in the PHANGS-MUSE catalog is shown as a red ⁵⁰⁶ 2-D histogram. In the bottom panel we compare with ⁵⁰⁷ gas dispersions from the SAMI Galaxy Survey shown ⁵⁰⁸ in light blue (Zhou et al. 2017). We similarly subtract ⁵⁰⁹ thermal broadening and natural line width in quadra-⁵¹⁰ ture from these dispersion measurements to make a di-⁵¹¹ rect comparison. The SAMI observations already have ⁵¹² a reasonably well-matched spatial resolution of 2.5", so ⁵¹³ no resolution cut is applied.

We separate HII regions in NGC 7331 into two popu-514 ⁵¹⁵ lations: those in the nuclear star forming ring and those ⁵¹⁶ distributed throughout the rest of the galactic disk. The 517 boundary of the inner ring used in this work is deter-⁵¹⁸ mined from the BIMA CO intensity map and is de-519 fined as an ellipse centered on $(\alpha, \delta) = (22h37m3.9s,$ +34d24m55.4s) with a major axis 2a = 150'' and a mi-520 nor axis 2b = 60'' at an angle of -16 degrees (clock-521 wise). There is a trend of high luminosity HII regions in 522 the inner ring having elevated velocity dispersions when 523 ⁵²⁴ compared with HII regions in the rest of the galactic disk. We discuss processes that may be driving these ⁵²⁶ high velocity dispersions in the inner ring of NGC 7331 527 in Section 5.

5. DISCUSSION

Our data are consistent with measurements from large surveys of HII regions, including the PHANGS-MUSE Survey (Congiu et al. 2023; Groves et al. 2023) and the SAMI Galaxy Survey (Zhou et al. 2017). Here, we discuss sources of turbulence driving the velocity dispersions measured in our sample of HII regions alongside caveats to these measurements and potential avenues for future work.

537

528

5.1. Turbulence Drivers

Past studies of giant HII regions have looked for an 538 539 envelope to the L- σ relation or the lowest non-thermal dispersion at a given luminosity (Terlevich & Melnick 540 1981; Arsenault et al. 1990; Relaño et al. 2005; Zaragoza-541 Cardiel et al. 2015). We show a range of models (hatched 542 shading) for this envelope in the top panel of Figure 5. 543 544 Regions along this envelope are density bounded, their 545 velocity dispersions are primarily driven by virial mo-546 tions, and their masses can be approximated from the virial theorem (Rozas et al. 1998; Beckman et al. 2000; 547 548 Relaño et al. 2005; Rozas et al. 2006; Blasco-Herrera 549 et al. 2010). A small subset of the most luminous, 550 early-stage HII regions near virial equilibrium may lie 551 on or near the L- σ envelope. These regions have gravity-⁵⁵² driven turbulence. Regions far from this envelope have

Figure 5: Average ionized gas velocity dispersion in extragalactic HII regions as a function of their H α luminosity (top) and star formation rate surface density (bottom). The black points represent the HII regions in NGC 7331 from this work, and they are divided into two populations: those in the nuclear star-forming ring (filled) and those distributed throughout the rest of the galactic disk (open). Corresponding histograms for the disk, ring, and total populations are shown along the sides. We compare our catalog with HII regions in the PHANGS-MUSE catalog (red 2D histogram) (Congiu et al. 2023) and the SAMI Galaxy Survey (light blue shading) (Zhou et al. 2017). Models shown are from (Lehnert et al. 2009). See text for more details.

sis kinematics dominated by contributions from additional signal processes. We find that, while some of the brightest HII regions in NGC 7331 may fall on/near the L- σ envelope after correcting for intrinsic extinction (see Section 5.2), the majority of HII regions in the disk and ring appear to be driven by alternate processes. This is not surprising, as turbulence driven by gravitational collapse requires massive giant molecular clouds with Jeans Masses on the order of $10^8 M_{\odot}$ and produces relatively low velocity dispersions with an upper limit on the order of 15 km s⁻¹ over our range in Σ_{SFR} (Lehnert et al. 2009; Zhou et al. 2017). Accordingly, we explore other sources of energy injection.

If intense star formation is injecting energy into the 566 ⁵⁶⁷ ISM, turbulence is likely a combination of larger-scale ⁵⁶⁸ bulk motions (outflows/shocks that accelerate the sur-⁵⁶⁹ rounding material) and smaller-scale random motions 570 (energy transferred to dense regions and eventually dis-⁵⁷¹ sipated) (Lehnert et al. 2009). In the bottom panel ⁵⁷² of Figure 5 we compare with energy injection models ⁵⁷³ formulated as a simple scaling relationship $\sigma \propto (\epsilon E)^{\alpha}$ 574 (Dib et al. 2006; Lehnert et al. 2009). Here ϵ is the ⁵⁷⁵ coupling efficiency of the injected energy transferred to the ISM. If turbulence is driven by star formation feed-576 577 back then the energy injected per unit area should be 578 correlated with the star formation rate surface density $\propto \epsilon (\Sigma_{\rm SFR})^{\alpha}$ (Lehnert et al. 2009; Green et al. 2010; 579 σ 580 Le Tiran et al. 2011; Swinbank et al. 2012a; Lehnert et al. 2013; Green et al. 2014; Moiseev et al. 2015). For 581 582 dispersions driven by bulk motions such as supernova 583 explosions, this proportion goes as $\sigma \propto \epsilon \Sigma_{\rm SFR}^{1/2}$. Here the ⁵⁸⁴ coupling factor for energy injected into the ISM ranges from $\epsilon = 100 - 240$ for efficiencies of 25% - 100% (Dib 586 et al. 2006). If instead energy from star formation is dis-587 sipated as turbulence dominated by random motions, a 588 steeper model $\sigma \propto \epsilon \Sigma_{\rm SFR}^{1/3}$ has been proposed to fit the ⁵⁸⁹ dispersion. Here $\epsilon = 80 - 130$ on 1 kpc injection scales for coupling efficiencies of 25% - 100% (Lehnert et al. ⁵⁹¹ 2009). The steeper model ($\alpha = 1/3$) provides a reason-⁵⁹² ably good fit to most regions, though some of the HII regions measured require an unphysically large coupling 593 efficiencies of 100% in either model. 594

⁵⁹⁵ Constraining the coupling efficiency to $80 < \epsilon < 240$, ⁵⁹⁶ we find a best fit relationship to all HII regions in NGC ⁵⁹⁷ 7331 of $\sigma \propto 80\Sigma_{\rm SFR}^{0.335}$. When we separate the disk and ⁵⁹⁸ ring populations, the fit for HII regions in the ring re-⁵⁹⁹ veals a slightly shallower relationship ($\alpha = 0.338$) than ⁶⁰⁰ the fit for HII regions in the disk ($\alpha = 0.328$). The shal-⁶⁰¹ lower relationship in the ring could suggest bulk motions ⁶⁰² contribute to the dispersion; however, due to scatter in ⁶⁰³ these measurements, this measured variation is likely ⁶⁰⁴ not significant. Many studies have found a similar power ⁶⁰⁵ law relation with $1/3 < \alpha < 1/2$ (Lehnert et al. 2009; ⁶⁰⁶ Zhou et al. 2017; Patrício et al. 2018; Yu et al. 2019; Cui ⁶⁰⁷ et al. 2024). Power law values within this range are no-⁶⁰⁸ tably lower than the $\sigma -\Sigma$ relationship expected from the ⁶⁰⁹ Kennicutt-Schmidt scaling law, which for a marginally ⁶¹⁰ stable disk (Q ~ 1) predicts $\sigma \propto \Sigma_{\rm SFR}^{0.7}$ (Toomre 1964; ⁶¹¹ Kennicutt 1998; Krumholz & Burkert 2010; Krumholz ⁶¹² et al. 2012; Swinbank et al. 2012b).

Increased velocity dispersions in the center of galaxies 613 614 including our own Milky Way is sometimes attributed 615 to shear/differential rotation in the disk; however, this 616 process increases the dispersion while suppressing star 617 formation, a scenario that is unlikely to explain the in-618 creased dispersion seen in the inner ring of NGC 7331 ⁶¹⁹ where star formation is enhanced (Krumholz et al. 2017; 620 Federrath et al. 2016; Kruijssen 2017; Federrath et al. 621 2017). We note that shear may still be contributing in ₆₂₂ regions with high dispersion and low $\Sigma_{\rm SFR}$. In our cat-623 alog, only about 10% of HII regions are both above the ₆₂₄ median in dispersion and below the median in $\Sigma_{\rm SFR}$. 625 The radial transport of gas through the disk can also 626 drive turbulent gas motions (Krumholz et al. 2018). 627 However, without a wider range in star formation rate, 628 turbulence driven by gas transport is not easily differen-629 tiated from turbulence driven by a combination of feed-630 back and transport (Krumholz et al. 2018; Varidel et al. ₆₃₁ 2020). Further modeling of the disk rotation is needed 632 to compare with the observed velocity map and assess 633 the degree of ionized gas transport in the disk of NGC 634 7331 (Mai et al. 2024).

5.2. Caveats

635

Beam smearing or the combination of differing lineof-sight velocities due to low spatial resolution can incase crease the measured velocity dispersion (Epinat et al. 2010; Davies et al. 2011). Beam smearing is most severe at high redshifts (low spatial resolutions) and in galaxies with larger inclinations. Large velocity gradients at the centers of galaxies can also amplify the effects of beam smearing, spuriously increasing the line-of-sight velocity dispersion. To ensure we are not overestimating the velocity dispersion, especially in the inner ring of NGC radii (e.g., Bassett et al. 2014; Varidel et al. 2016; Zhou et al. 2017).

A significant fraction of ionized gas emission occurs beyond HII regions, emanating from the diffuse ionized gas (DIG) between spiral arms. The DIG has been shown to exhibit large velocity dispersions, and measurements of patchy bright complexes may contain an underlying contribution from this broad diffuse emission 656 (Thurow & Wilcots 2005; Oey et al. 2007). Due to our 657 high signal to noise cut, we do not expect our spectra 658 to be significantly contaminated by broad faint emission 659 from the DIG. We leave for future work an examination 660 of broad and multi-component spectra and lower SNR 661 diffuse regions that may be associated with elevated ve-662 locity dispersions.

NGC 7331 is host to many well-known dust features, 663 with dust distributed throughout the spiral arms and 664 prominent dust lanes seen in the western galactic disk. 665 ⁶⁶⁶ The central star forming ring is also dusty; it appears ₆₆₇ bright in $24\mu m$ images but is absent in GALEX UV 668 data, likely the result of substantial dust extinction (Thilker et al. 2007). The SINGS NGC 7331 H α map 669 670 used here is corrected for Galactic foreground extinction 671 but not for intrinsic extinction. For a direct compari- $_{672}$ son, we do not use the E(B-V) extinction corrections 673 for the PHANGS-MUSE and SAMI survey when plot-674 ting these datasets in Figure 5. Bright HII regions in 675 NGC 7331 that are enshrouded in dust will have a sig-676 nificantly lower observed flux/luminosity. Additionally, 677 an inhomogeneous dust distribution that produces vary-678 ing intrinsic extinction complicates the interpretation of 679 relative flux/luminosity values for HII regions in spatially distinct environments, such as the disk vs the ring. We acknowledge that uncertainties in the intrinsic red-681 682 dening correction may weaken the derived correlation 683 between $\sigma - SFR(L_{H\alpha})$, with a stronger correlation of-⁶⁸⁴ ten noted between $\sigma - SFR(L_{IR})$ (Arribas et al. 2014). $_{685}$ Follow-up observations with CH α S in the narrowband 686 H β mode (Sitaram et al. 2024) would allow us to esti-687 mate our own extinction corrections for NGC 7331 and ⁶⁸⁸ future targets. Corrections for intrinsic extinction have ⁶⁰⁹ been previously derived in NGC 7331 by Thilker et al. $_{690}$ (2007), finding a global $A_{\rm FUV} = 2.51$ in the disk and $_{691}$ $A_{\rm FUV} = 3.3$ in the ring. Following Thilker et al. (2007), ⁶⁹² we assume that the dust structure in NGC 7331 is sim-⁶⁹³ ilar to the Milky Way. Using the Milky way extinction ⁶⁹⁴ curve from Cardelli et al. (1989), $A_{\rm FUV} = 2.64 A_{\rm V}$ at 695 $\lambda_{eff} = 1516$ for the GALEX FUV channel (Morrissey 696 et al. 2007) and $A_{\rm H\alpha} = 0.82 A_{\rm V}$. Accordingly, HII re-₆₉₇ gions in the disk of NGC 7331 have $A(H\alpha) = 0.78$ and ⁶⁹⁸ HII regions in the ring have $A(H\alpha) = 1.02$. Accounting ⁶⁹⁹ for this intrinsic extinction increases the flux/luminosity $_{700}$ values by a factor of 2 (0.3 dex) in the disk and up to 2.5 701 (0.4 dex) in the ring. Accordingly, correcting for intrin-⁷⁰² sic extinction in Figure 5 places some of the brightest ⁷⁰³ HII regions on/near the L- σ envelope, implying they are $_{704}$ near virial equilibrium (See Section 5.1).

1. We investigate the ionized gas kinematics of HII regions in the disk of NGC 7331 using IFU spectral imaging collected with the Circumgalactic H α Spectrograph (CH α S). We catalog > 150 HII regions distributed throughout the disk, ranging in diameter from approximately 350 pc - 700 pc. Many of these regions fall within the inner ring of dust and gas, which hosts one-third of the galaxy's current star formation activity.

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

- 2. High-resolution velocity and dispersion maps of NGC 7331 are presented in this work, selecting spaxels with high signal-to-noise in order to measure dispersions as low as 12 km s⁻¹. Prominent residuals in the $V_{H\alpha} V_{HI}$ map are likely the result of resolution differences (beam smearing) or variation in the neutral and excited gas distributions; however, follow-up analysis of these features is needed to look for peculiar gas motions.
- 3. The L(H α), $\Sigma_{\rm SFR}$ and σ measurements we make in NGC 7331 are consistent with spatially resolved observations of HII regions in large surveys of nearby galaxy disks. The dispersion is correlated with the star formation rate surface density, suggesting that models for intense star formation injecting energy into the ISM are a favorable fit to HII regions in NGC 7331. Using the relation $\sigma \propto \epsilon \Sigma_{\rm SFR}^{\alpha}$ HII regions in NGC7331 are best fit by $\epsilon = 80$, $\alpha = 0.335$. The best fit varies slightly but not significantly between the ring and the disk, hindered by scatter.
- 4. En-route to ultra-deep observations of the circumgalactic medium, $CH\alpha S$ will obtain detailed spectral imaging of a large sample of nearby galaxy disks. The methods used in this pilot study will be applied to a larger sample of galaxies observed during the $CH\alpha S$ early science campaigns.

⁷⁴² The Circumgalactic H α Spectrograph is funded by NSF ⁷⁴³ AST-1407652. Nicole Melso is supported by the Alan ⁷⁴⁴ Brass Prize Fellowship in Instrumentation and Technol-⁷⁴⁵ ogy Development. Meghna Sitaram is supported by ⁷⁴⁶ NASA FINESST 80NSSC22K1603. CH α S data was ⁷⁴⁷ collected at the MDM Observatory, operated by Dart-⁷⁴⁸ mouth College, Columbia University, Ohio State Uni-⁷⁴⁹ versity, Ohio University, and the University of Michi-⁷⁵⁰ gan. Many thanks to the MDM Observatory staff Eric ⁷⁵¹ Galayda and Tony Negrete for their help setting up ⁷⁵² these observations and installing CH α S on the Hiltner ⁷⁵³ 2.4-meter. Thank you to John Thorstensen and Jules ⁷⁵⁴ Halpern for their support in scheduling these observa-⁷⁵⁵ tions. Thank you to Rob Kennicutt and Sean Linden ⁷⁵⁶ for helpful discussions that have improved this work.

705

6. SUMMARY

- 758 Arribas, S., Colina, L., Bellocchi, E., Maiolino, R., &
- ⁷⁵⁹ Villar-Martín, M. 2014, A&A, 568, A14,
- 760 doi: 10.1051/0004-6361/201323324
- ⁷⁶¹ Arsenault, R., Roy, J. R., & Boulesteix, J. 1990, A&A, 234,
 ⁷⁶² 23
- 763 Bacchini, C., Fraternali, F., Iorio, G., et al. 2020, A&A,
- ⁷⁶⁴ 641, A70, doi: 10.1051/0004-6361/202038223
- ⁷⁶⁵ Bassett, R., Glazebrook, K., Fisher, D. B., et al. 2014,
 ⁷⁶⁶ MNRAS, 442, 3206, doi: 10.1093/mnras/stu1029
- 767 Battaner, E., Mediavilla, E., Guijarro, A., Arribas, S., &
- ⁷⁶⁸ Florido, E. 2003, A&A, 401, 67,
- 769 doi: 10.1051/0004-6361:20020997
- 770 Beckman, J. E., Rozas, M., Zurita, A., Watson, R. A., &
- 771 Knapen, J. H. 2000, AJ, 119, 2728, doi: 10.1086/301380
- 772 Bellocchi, E., Arribas, S., Colina, L., & Miralles-Caballero,
- 773 D. 2013, A&A, 557, A59,
- doi: 10.1051/0004-6361/201221019
- ⁷⁷⁵ Blasco-Herrera, J., Fathi, K., Beckman, J., et al. 2010,
 ⁷⁷⁶ MNRAS, 407, 2519,
- 777 doi: 10.1111/j.1365-2966.2010.17078.x
- 778 Blauensteiner, M., Remmel, P., Riepe, P., et al. 2017,
- Astrophysics, 60, 295, doi: 10.1007/s10511-017-9482-9
- ⁷⁸⁰ Bosma, A. 1978, PhD thesis, University of Groningen,
 ⁷⁸¹ Netherlands
- 782 —. 1981, AJ, 86, 1825, doi: 10.1086/113063
- 783 Bottema, R. 1999, A&A, 348, 77,
- 784 doi: 10.48550/arXiv.astro-ph/9902240
- 785 Calzetti, D. 2013, in Secular Evolution of Galaxies, ed.
- 786 J. Falcón-Barroso & J. H. Knapen, 419
- ⁷⁸⁷ Cardelli, J. A., Clayton, G. C., & Mathis, J. S. 1989, ApJ,
 ⁷⁸⁸ 345, 245, doi: 10.1086/167900
- 789 Cevallos-Aleman, I., Schiminovich, D., Sitaram, M., et al.
- ⁷⁹⁰ 2024, in Society of Photo-Optical Instrumentation
- ⁷⁹¹ Engineers (SPIE) Conference Series, Vol. 13096,
- 792 Ground-based and Airborne Instrumentation for
- Astronomy X, ed. J. J. Bryant, K. Motohara, & J. R. D.
 Vernet, 1309643, doi: 10.1117/12.3019501
- 795 Congiu, E., Blanc, G. A., Belfiore, F., et al. 2023, VizieR
- 796 Online Data Catalog: Catalogue of classified nebulae
- ⁷⁹⁷ (Congiu+, 2023), VizieR On-line Data Catalog:
- ⁷⁹⁸ J/A+A/672/A148. Originally published in:
- ⁷⁹⁹ 2023A&A...672A.148C, doi: 10.26093/cds/vizier.36720148
- $_{\tt 800}$ Cosens, M., Wright, S. A., Murray, N., et al. 2022, ApJ,
- 801 929, 74, doi: 10.3847/1538-4357/ac52f3
- 802 Cowan, J. J., Romanishin, W., & Branch, D. 1994, ApJL,
- 436, L139, doi: 10.1086/187652

- 804 Cui, J., Gu, Q., Lu, S., et al. 2024, ApJ, 975, 124,
- doi: 10.3847/1538-4357/ad77a1
- ⁸⁰⁶ Daigle, O., Carignan, C., Amram, P., et al. 2006, MNRAS,
- 807 367, 469, doi: 10.1111/j.1365-2966.2006.10002.x
- ⁸⁰⁸ Davies, R., Förster Schreiber, N. M., Cresci, G., et al. 2011,
 ⁸⁰⁹ ApJ, 741, 69, doi: 10.1088/0004-637X/741/2/69
- 810 de Vaucouleurs, G., de Vaucouleurs, A., Corwin, Herold G.,
- J., et al. 1991, Third Reference Catalogue of Bright
 Galaxies
- ⁸¹³ Dib, S., Bell, E., & Burkert, A. 2006, ApJ, 638, 797,
 ⁸¹⁴ doi: 10.1086/498857
- 815 Elmegreen, B. G., & Scalo, J. 2004, ARA&A, 42, 211,
- 816 doi: 10.1146/annurev.astro.41.011802.094859
- 817 Epinat, B., Amram, P., Balkowski, C., & Marcelin, M.
- ⁸¹⁸ 2010, MNRAS, 401, 2113,
- doi: 10.1111/j.1365-2966.2009.15688.x
- 820 Espinosa-Ponce, C., Sánchez, S. F., Morisset, C., et al.
- 2020, MNRAS, 494, 1622, doi: 10.1093/mnras/staa782
- 822 Federrath, C., Rathborne, J. M., Longmore, S. N., et al.
- ⁸²³ 2016, ApJ, 832, 143, doi: 10.3847/0004-637X/832/2/143
- 824 Federrath, C., Rathborne, J. M., Longmore, S. N., et al.
- 2017, in IAU Symposium, Vol. 322, The Multi-Messenger
- Astrophysics of the Galactic Centre, ed. R. M. Crocker,
- 827 S. N. Longmore, & G. V. Bicknell, 123–128,
- doi: 10.1017/S1743921316012357
- Freedman, W. L., Madore, B. F., Gibson, B. K., et al. 2001,
 ApJ, 553, 47, doi: 10.1086/320638
- 831 Ginzburg, O., Dekel, A., Mandelker, N., & Krumholz, M. R.
- ⁸³² 2022, MNRAS, 513, 6177, doi: 10.1093/mnras/stac1324
- 833 Glazebrook, K. 2013, PASA, 30, e056,
- ⁸³⁴ doi: 10.1017/pasa.2013.34
- ⁸³⁵ Green, A. W., Glazebrook, K., McGregor, P. J., et al. 2010,
 Nature, 467, 684, doi: 10.1038/nature09452
- 837 —. 2014, MNRAS, 437, 1070, doi: 10.1093/mnras/stt1882
- 838 Groves, B., Kreckel, K., Santoro, F., et al. 2023, MNRAS,
- ⁸³⁹ 520, 4902, doi: 10.1093/mnras/stad114
- ⁸⁴⁰ Helfer, T. T., Thornley, M. D., Regan, M. W., et al. 2003,
 ⁸⁴¹ ApJS, 145, 259, doi: 10.1086/346076
- ⁸⁴² Hodge, P. W., & Kennicutt, R. C., J. 1983, AJ, 88, 296,
- doi: 10.1086/113318
- ⁸⁴⁴ Kennicutt, Robert C., J., Armus, L., Bendo, G., et al. 2003,
 ⁸⁴⁵ PASP, 115, 928, doi: 10.1086/376941
- 846 Kennicutt, Jr., R. C. 1998, ApJ, 498, 541,
- 847 doi: 10.1086/305588

- 848 Kruijssen, J. M. D. 2017, in IAU Symposium, Vol. 322, The
- ⁸⁴⁹ Multi-Messenger Astrophysics of the Galactic Centre, ed.
- R. M. Crocker, S. N. Longmore, & G. V. Bicknell, 64–74,
 doi: 10.1017/S1743921316012138
- ⁸⁵² Krumholz, M., & Burkert, A. 2010, ApJ, 724, 895,
- 853 doi: 10.1088/0004-637X/724/2/895
- 854 Krumholz, M. R., & Burkhart, B. 2016, MNRAS, 458,
- ⁸⁵⁵ 1671, doi: 10.1093/mnras/stw434
- 856 Krumholz, M. R., Burkhart, B., Forbes, J. C., & Crocker,
- ⁸⁵⁷ R. M. 2018, MNRAS, 477, 2716,
- 858 doi: 10.1093/mnras/sty852
- Krumholz, M. R., Dekel, A., & McKee, C. F. 2012, ApJ,
 745, 69, doi: 10.1088/0004-637X/745/1/69
- ⁸⁶¹ Krumholz, M. R., Kruijssen, J. M. D., & Crocker, R. M.
- ⁸⁶² 2017, MNRAS, 466, 1213, doi: 10.1093/mnras/stw3195
- 863 Le Tiran, L., Lehnert, M. D., van Driel, W., Nesvadba,
- ⁸⁶⁴ N. P. H., & Di Matteo, P. 2011, A&A, 534, L4,
- doi: 10.1051/0004-6361/201117609
- ⁸⁶⁶ Lehnert, M. D., Le Tiran, L., Nesvadba, N. P. H., et al.
- ⁸⁶⁷ 2013, A&A, 555, A72, doi: 10.1051/0004-6361/201220555
- 868 Lehnert, M. D., Nesvadba, N. P. H., Le Tiran, L., et al.
- ⁸⁶⁹ 2009, ApJ, 699, 1660,
- doi: 10.1088/0004-637X/699/2/1660
- ⁸⁷¹ Leroy, A. K., Walter, F., Brinks, E., et al. 2008, AJ, 136,
 ⁸⁷² 2782, doi: 10.1088/0004-6256/136/6/2782
- ⁸⁷³ Leroy, A. K., Bigiel, F., de Blok, W. J. G., et al. 2012, AJ,
 ⁸⁷⁴ 144, 3, doi: 10.1088/0004-6256/144/1/3
- 875 Ludwig, J., Pasquali, A., Grebel, E. K., & Gallagher, III,
- ⁸⁷⁶ J. S. 2012, AJ, 144, 190,
- doi: 10.1088/0004-6256/144/6/190
- 878 Mac Low, M.-M., & Klessen, R. S. 2004, Reviews of Modern
- ⁸⁷⁹ Physics, 76, 125, doi: 10.1103/RevModPhys.76.125
- Mai, Y., Croom, S. M., Wisnioski, E., et al. 2024, MNRAS,
 533, 3878, doi: 10.1093/mnras/stae2033
- ⁸⁸² Marcelin, M., Petrosian, A. R., Amram, P., & Boulesteix,
 ⁸⁸³ J. 1994, A&A, 282, 363
- 884 McLeod, A. F., Kruijssen, J. M. D., Weisz, D. R., et al.
- ⁸⁸⁵ 2020, ApJ, 891, 25, doi: 10.3847/1538-4357/ab6d63
- ⁸⁸⁶ Melso, N., Schiminovich, D., Smiley, B., et al. 2022, ApJ,
 ⁸⁸⁷ 941, 185, doi: 10.3847/1538-4357/ac9d9c
- 888 Moiseev, A. V., Tikhonov, A. V., & Klypin, A. 2015,
- 889 MNRAS, 449, 3568, doi: 10.1093/mnras/stv489
- 890 Morrissey, P., Conrow, T., Barlow, T. A., et al. 2007,
- ⁸⁹¹ ApJS, 173, 682, doi: 10.1086/520512
- ⁸⁹² Murphy, E. J., Dong, D., Momjian, E., et al. 2018, ApJS,
 ⁸⁹³ 234, 24, doi: 10.3847/1538-4365/aa99d7
- ⁸⁹⁴ Oey, M. S., Meurer, G. R., Yelda, S., et al. 2007, ApJ, 661,
 ⁸⁹⁵ 801, doi: 10.1086/517867
- 896 Osterbrock, D. E. 1974, Astrophysics of gaseous nebulae

- 897 Osterbrock, D. E., Fulbright, J. P., Martel, A. R., et al.
- ⁸⁹⁸ 1996, PASP, 108, 277, doi: 10.1086/133722
- Patrício, V., Richard, J., Carton, D., et al. 2018, MNRAS,
 477, 18, doi: 10.1093/mnras/sty555
- Perna, M., Arribas, S., Colina, L., et al. 2022, A&A, 662,
 A94, doi: 10.1051/0004-6361/202142659
- 903 Petit, H. 1998, A&AS, 131, 317, doi: 10.1051/aas:1998267
- 904 Prada, F., Gutierrez, C. M., Peletier, R. F., & McKeith,
- 905 C. D. 1996, ApJL, 463, L9, doi: 10.1086/310044
- ⁹⁰⁶ Regan, M. W., Thornley, M. D., Bendo, G. J., et al. 2004,
 ⁹⁰⁷ ApJS, 154, 204, doi: 10.1086/423204
- 908 Relaño, M., Beckman, J. E., Zurita, A., Rozas, M., &
- 909 Giammanco, C. 2005, A&A, 431, 235,
- 910 doi: 10.1051/0004-6361:20040483
- 911 Rickards Vaught, R. J., Sandstrom, K. M., Belfiore, F.,
- et al. 2024, ApJ, 966, 130, doi: 10.3847/1538-4357/ad303c
- $_{\rm 913}$ Rizzo, F., Bacchini, C., Kohandel, M., et al. 2024, A&A,
- 914 689, A273, doi: 10.1051/0004-6361/202450455
- 915 Rozas, M., Richer, M. G., López, J. A., Relaño, M., &
- 916 Beckman, J. E. 2006, A&A, 455, 539,
- 917 doi: 10.1051/0004-6361:20054388
- ⁹¹⁸ Rozas, M., Sabalisck, N., Beckman, J. E., & Knapen, J. H.
 ⁹¹⁹ 1998, A&A, 338, 15
- ⁹²⁰ Rozas, M., Zurita, A., Beckman, J. E., & Pérez, D. 2000,
 ⁹²¹ A&AS, 142, 259, doi: 10.1051/aas:2000329
- ⁹²² Rubin, V. C., Burbidge, E. M., Burbidge, G. R., Crampin,
 ⁹²³ D. J., & Prendergast, K. H. 1965, ApJ, 141, 759,
- 924 doi: 10.1086/148160
- 925 Sánchez, S. F., Rosales-Ortega, F. F., Marino, R. A., et al.
- 926 2012, A&A, 546, A2, doi: 10.1051/0004-6361/201219578
- 927 Schmidt, T. M., Bigiel, F., Klessen, R. S., & de Blok,
- 928 W. J. G. 2016, MNRAS, 457, 2642,
- 929 doi: 10.1093/mnras/stw011
- ⁹³⁰ SINGS Team. 2020, Spitzer Infrared Nearby Galaxy Survey,
 ⁹³¹ IPAC, doi: 10.26131/IRSA424
- 932 Sitaram, M., Schiminovich, D., Cevallos-Aleman, I., et al.
- ⁹³³ 2024, in Society of Photo-Optical Instrumentation
- 934 Engineers (SPIE) Conference Series, Vol. 13096,
- 935 Ground-based and Airborne Instrumentation for
- 936 Astronomy X, ed. J. J. Bryant, K. Motohara, & J. R. D.
- 937 Vernet, 1309642, doi: 10.1117/12.3019359
- 938 Swinbank, A. M., Smail, I., Sobral, D., et al. 2012a, ApJ,
- 939 760, 130, doi: 10.1088/0004-637X/760/2/130
- 940 —. 2012b, ApJ, 760, 130,
- 941 doi: 10.1088/0004-637X/760/2/130
- 942 Telesco, C. M., Gatley, I., & Stewart, J. M. 1982, ApJL,
- 943 263, L13, doi: 10.1086/183914
- 944 Terlevich, R., & Melnick, J. 1981, MNRAS, 195, 839,
- 945 doi: 10.1093/mnras/195.4.839

- 946 Thilker, D. A., Boissier, S., Bianchi, L., et al. 2007, ApJS,
- 947 173, 572, doi: 10.1086/516646
- 948 Thurow, J. C., & Wilcots, E. M. 2005, AJ, 129, 745,
- 949 doi: 10.1086/426751
- 950 Toomre, A. 1964, ApJ, 139, 1217, doi: 10.1086/147861
- 951 Tully, R. B. 1988, Nearby galaxies catalog
- 952 Übler, H., Genzel, R., Wisnioski, E., et al. 2019, ApJ, 880,
- 953 48, doi: 10.3847/1538-4357/ab27cc
- 954 Varidel, M., Pracy, M., Croom, S., Owers, M. S., & Sadler,
- E. 2016, PASA, 33, e006, doi: 10.1017/pasa.2016.3

- 956 Varidel, M. R., Croom, S. M., Lewis, G. F., et al. 2020,
- 957 MNRAS, 495, 2265, doi: 10.1093/mnras/staa1272
- ⁹⁵⁸ Walter, F., Brinks, E., de Blok, W. J. G., et al. 2008, AJ,
 ⁹⁵⁹ 136, 2563, doi: 10.1088/0004-6256/136/6/2563
- Young, J. S., & Scoville, N. 1982, ApJL, 260, L41,
 doi: 10.1086/183866
- ⁹⁶² Yu, X., Shi, Y., Chen, Y., et al. 2019, MNRAS, 486, 4463,
 ⁹⁶³ doi: 10.1093/mnras/stz1146
- ⁹⁶⁴ Zaragoza-Cardiel, J., Beckman, J. E., Font, J., et al. 2015,
 ⁹⁶⁵ MNRAS, 451, 1307, doi: 10.1093/mnras/stv1024
- 966 Zhou, L., Federrath, C., Yuan, T., et al. 2017, MNRAS,
- 967 470, 4573, doi: 10.1093/mnras/stx1504

Table 2: HII regions

	Literature	RA	DEC	Radius 3σ	$H\alpha$ Flux	$H\alpha$ Luminosity	SFR $(H\alpha)$	Dispersion
ID	ID	(J2000)	(J2000)	[arcseconds]	$[ergs/s/cm^2]$	[ergs/s]	$[M_{\odot}/yr]$	[km/s]
1	M034	339.2799974289881	34.353479623056664	9.27	7.48×10^{-15}	1.88×10^{38}	0.001	18.91
2	M044	339.27610333158464	34.401808138854506	8.62	1.64×10^{-14}	4.13×10^{38}	0.0023	26.14
3	M049	339.2750912	34.41049262866931	7.76	2.53×10^{-14}	6.36×10^{38}	0.0035	23.87
4	M050	339.2750997853362	34.40567777266111	7.99	3.80×10^{-14}	9.57×10^{38}	0.0053	29.1
5	M051	339.27497039090173	34.41243175066703	7.33	3.02×10^{-14}	7.61×10^{38}	0.0042	27.19
6	M053	339.27439414899334	34.408125884906546	8.38	3.35×10^{-14}	8.44×10^{38}	0.0046	30.53
7	M055	339.2723648163001	34.39692250214503	8.68	8.10×10^{-15}	2.04×10^{38}	0.0011	18.41
8	M056	339.27262262255937	34.40349697558669	9.56	1.31×10^{-14}	3.29×10^{38}	0.0018	23.04
9	M062	339.27045072451983	34.42485497953342	8.15	4.47×10^{-14}	1.12×10^{39}	0.0062	31.6
10	M067	339.26791402473305	34,42383851470202	8.6	3.28×10^{-14}	8.26×10^{38}	0.0045	30.59
11	M068	339.2684408318342	34.42867697	7.12	2.15×10^{-14}	5.40×10^{38}	0.003	25.69
12	M070	339.26770787482144	34.42667806525346	9.39	3.06×10^{-14}	7.69×10^{38}	0.0042	27.53
13	M074	339 26634625471115	34 406919607196905	7 95	4.18×10^{-14}	1.05×10^{39}	0.0058	34 47
14	M077	339.2649733660056	34.42620580531687	9.4	2.26×10^{-14}	5.68×10^{38}	0.0031	31.13
15	M080	339.2635184291207	34.42832928706503	8.37	2.84×10^{-14}	7.13×10^{38}	0.0039	22.12
16	M081	339 2634886807107	34 413545209835824	9.41	2.32×10^{-14}	5.82×10^{38}	0.0032	22.04
17	M091	339 2608074773679	34 41750533293591	89	1.18×10^{-14}	2.96×10^{38}	0.0016	16.5
18	M101	339 2575474888493	34 42056357	7 42	4.45×10^{-14}	1.12×10^{39}	0.0010	27.58
10	M111	330 2555200173183	34 42624635180776	7.16	2.02×10^{-14}	7.35×10^{38}	0.0002	21.00
20	M112	330 2547082	34 43668480772701	7.10	2.52×10^{-14} 2.50×10^{-14}	6.29×10^{38}	0.004	22.04
20	M112 M118	330 2505043057405	34 41601801040542	0.43	4.10×10^{-15}	1.05×10^{38}	0.0006	< 12
21	P 1993704 8 ± 349495	339.2505945957455	34.40607252254401	9.40 8.80	4.19×10^{-14} 2.78×10^{-14}	$1.03 \times 10^{-6.00} \times 10^{-38}$	0.0000	30.13
22	P004	220 24520161276606	24.40007232234491	8.89	2.78×10^{-15}	0.99×10 1.59 × 10 ³⁸	0.0038	14.65
20	P004	220 2465487220270	24.448006006072655	7.01	0.00×10^{-15}	$1.32 \times 10^{-1.02}$	0.0008	14.05
24	P 000	220 24675517610005	24.440990990973033	7.91	4.40×10^{-15}	1.13×10^{10}	0.0000	10.4
20	P007	220.24070017019000	34.43023373300373	6.04	4.01×10 4.50×10^{-15}	1.01×10 1.16×10^{38}	0.0000	10
20	P008	339.2408322400331 220.94711446266214	34.43820777800383	0.8	4.09×10^{-15}	1.10×10 1.24×10^{38}	0.0000	15.45
21	P009	220 2470522275204	34.401199238000034	8.07 7.46	3.33×10^{-15}	$1.34 \times 10^{-0.04} \times 10^{37}$	0.0007	23.33
20	P014 D015	339.2479383273394	34.477364619301433	7.40	3.39×10^{-15}	9.04×10^{-37}	0.0005	15.01
29	P015 D016	339.2484207173241	34.44082807070712	6.99	2.38×10^{-15}	0.50×10^{-1}	0.0004	< 12
30	P010	339.2492963362072	34.44745209902955	0.20 7.00	3.33×10^{-15}	1.34×10 0.05×10^{38}	0.0007	14.95
31	P028	339.25425548551	34.44521260840597	7.26	8.13×10^{-14}	2.05×10^{33}	0.0011	28.94
32	P030	339.2340132	34.43383982841402	8.79	1.33×10	3.40×10^{10}	0.0019	21.00
33	P032	339.2557505770385	34.422005045917686	10.12	2.41×10^{-14}	0.05×10^{38}	0.0033	24.39
35	P034	339.25538714251394	34.435644300549164	9.61	1.79×10^{-14}	4.51×10^{33}	0.0025	25.34
36	P035	339.2557330420641	34.43127285993701	7.82	1.62×10^{-15}	4.06×10^{33}	0.0022	18.19
37	P037	339.2550048512991	34.440108882090575	8.03	9.77×10^{-14}	2.40×10^{38}	0.0014	14.57
39	P038	339.25639001564656	34.41085520612168	8.1	1.92×10^{-14}	4.84×10^{33}	0.0027	19.78
40	P040	339.2564038296579	34.423493909743264	8.2	3.01×10^{-15}	7.56×10^{38}	0.0042	15.68
41	P041	339.2566214208914	34.44951560803631	8.29	7.90×10^{-13}	1.99×10^{38}	0.0011	15.7
42	P042	339.2567721248971	34.41101917482906	8.56	2.07×10^{-14}	5.20×10^{33}	0.0029	20.64
43	P043	339.2566648178783	34.422437447326224	9.15	2.92×10^{-11}	7.35×10^{38}	0.004	23.2
44	P047	339.2569614917571	34.448313282864824	7.08	9.61×10^{-13}	2.42×10^{38}	0.0013	17.25
45	P048	339.25745721378286	34.408826208056745	8.16	2.77×10^{-14}	6.98×10^{38}	0.0038	23.88
46	P049	339.2573447386873	34.44439318894881	7.2	1.58×10^{-14}	3.98×10^{38}	0.0022	18.77
47	P052	339.2577084285793	34.41876595776951	8.55	2.23×10^{-14}	5.60×10^{38}	0.0031	19.02
48	P053	339.2573024924532	34.410835219130135	9.26	2.05×10^{-11}	5.16×10^{38}	0.0028	20.75
49	P054	339.2576891984581	34.408250024967955	9.11	2.78×10^{-14}	7.00×10^{38}	0.0038	21.29
50	P058	339.2584660503508	34.452820740740165	6.99	9.24×10^{-13}	2.32×10^{38}	0.0013	17.59
51	P059	339.2589184482859	34.425779188345224	8.72	1.18×10^{-11}	2.97×10^{38}	0.0016	21.16
52	P060	339.2591818231548	34.40160027	8.9	2.76×10^{-14}	6.94×10^{33}	0.0038	27.4
53	P061	339.2595286813322	34.37859706802978	7.03	3.31×10^{-13}	8.34×10^{37}	0.0005	23.05
54	P062	339.2588728727057	34.43086880751817	10.21	1.20×10^{-14}	3.02×10^{38}	0.0017	15.81
55	P063	339.25932323482624	34.45521765162969	8.57	9.04×10^{-13}	2.28×10^{38}	0.0013	16.59
56	P064	339.25901070247824	34.47989189814565	6.7	3.46×10^{-15}	8.71×10^{37}	0.0005	< 12
57	P065	339.2596786331047	34.43167423483792	8.5	1.50×10^{-14}	3.76×10^{38}	0.0021	15.33
58	P066	339.25961487163454	34.430374598519535	10.64	1.09×10^{-14}	2.75×10^{38}	0.0015	20.93
59	P068	339.2598097005033	34.433476070956615	8.24	1.53×10^{-14}	3.84×10^{38}	0.0021	16.28
60	P070	339.2601152087485	34.42774873574997	9.77	1.93×10^{-14}	4.86×10^{38}	0.0027	25.58
61	P071	339.2601648504359	34.40148210826472	8.97	3.10×10^{-14}	7.80×10^{38}	0.0043	22.76
62	P073	339.26010852373577	34.44557597698603	7.87	7.75×10^{-15}	1.95×10^{38}	0.0011	18.88
63	P074	339.26110527993006	34.39350094894859	7.17	7.14×10^{-15}	1.80×10^{38}	0.001	15.55
64	P075	339.26092081673886	34.41006288768159	8.0	1.29×10^{-14}	3.23×10^{38}	0.0018	23.82
65	P077	339.2610300820177	34.40029331238323	8.58	1.97×10^{-14}	4.96×10^{38}	0.0027	20.18

 Table 2: HII regions continued

	Literature	RA	DEC	Radius 3σ	$H\alpha$ Flux	$H\alpha$ Luminosity	SFR $(H\alpha)$	Dispersion
ID	ID	(J2000)	(J2000)	[arcseconds]	$[ergs/s/cm^2]$	[ergs/s]	$[M_{\odot}/yr]$	[km/s]
66	P078	339.2607130770804	34.46450183544925	6.85	3.36×10^{-15}	8.44×10^{37}	0.0005	18.28
67	P079	339.2610309101004	34.42630987255479	8.63	2.70×10^{-14}	6.78×10^{38}	0.0037	24.77
68	P080	339.2621051036047	34.41792894597592	8.73	1.89×10^{-14}	4.77×10^{38}	0.0026	20.01
69	P081	339.26168456150634	34.46549368	9.16	4.93×10^{-15}	1.24×10^{38}	0.0007	14.68
70	P084	339.2618591028508	34.43682671574398	8.76	9.61×10^{-15}	2.42×10^{38}	0.0013	18.12
71	P085	339.26192171679327	34.41634831	10.19	1.48×10^{-14}	3.73×10^{38}	0.0021	24.72
72	P086	339.2622950444613	34.37572637277211	8.41	4.18×10^{-15}	1.05×10^{38}	0.0006	21.51
73	P087	339.26179425790696	34.42333355728113	8.99	1.97×10^{-14}	4.95×10^{38}	0.0027	27.97
74	P088	339.2621255844163	34.40392068562348	7.64	2.61×10^{-14}	6.56×10^{38}	0.0036	24.45
75	P089	339.26216638578114	34.43534191772748	8.62	9.68×10^{-15}	2.44×10^{38}	0.0013	18.36
76	P090	339.2621603110673	34.45552709	7.09	1.09×10^{-14}	2.75×10^{38}	0.0015	18.16
77	P091	339.26262681756185	34.42056422211514	9.49	1.87×10^{-14}	4.70×10^{38}	0.0026	22.08
78	P101	339.2628763797871	34.44337436216011	7.79	5.98×10^{-15}	1.50×10^{38}	0.0008	< 12
79	P103	339.26382609634027	34.43362778659859	7.41	1.68×10^{-14}	4.23×10^{38}	0.0023	25.17
80	P104	339.26366386827965	34.43820037	8.63	7.40×10^{-15}	1.86×10^{38}	0.001	16.6
81	P105	339.26449594127325	34.411178600238095	8.55	1.99×10^{-14}	5.02×10^{38}	0.0028	21.42
82	P109	339.2652638703704	34.38384573286964	7.5	3.23×10^{-15}	8.13×10^{37}	0.0004	14.22
83	P110	339.2650768497967	34.44199986996687	7.4	7.92×10^{-15}	1.99×10^{38}	0.0011	19.02
84	P111	339.2653519521519	34.39100371717822	8.51	1.56×10^{-14}	3.93×10^{38}	0.0022	23.38
85	P113	339.2651615462616	34.453731625919545	7.41	5.45×10^{-15}	1.37×10^{38}	0.0008	16.35
86	P114	339.26472826654464	34.45651170734874	8.64	3.12×10^{-15}	7.85×10^{37}	0.0004	< 12
87	P117	339.2654333272613	34.46350915875691	6.74	3.18×10^{-15}	8.00×10^{37}	0.0004	18.21
88	P118	339.2651971727298	34.43207413972957	11.06	9.51×10^{-15}	2.39×10^{38}	0.0013	24.23
89	P119	339.26616363936654	34.403643011902325	8.28	1.13×10^{-14}	2.83×10^{38}	0.0016	20.45
90	P120	339.26641436177886	34.39066392	7.82	1.84×10^{-14}	4.62×10^{38}	0.0025	21.99
91	P122	339.26639150045554	34.44624293660967	6.63	3.60×10^{-15}	9.06×10^{37}	0.0005	< 12
92	P123	339.2666995	34.454088089113974	8.53	4.87×10^{-15}	1.23×10^{38}	0.0007	19.07
93	P124	339.2665757907516	34.43275381515483	9.55	7.80×10^{-15}	1.96×10^{38}	0.0011	18.31
94	P125	339.2678997232997	34.36177769090223	7.06	3.50×10^{-15}	8.81×10^{37}	0.0005	17.27
95	P127	339.26743793761267	34.39668314780908	8.65	1.30×10^{-14}	3.26×10^{38}	0.0018	20.3
96	P129	339.26793410530746	34.39498857968776	7.26	8.80×10^{-15}	2.21×10^{38}	0.0012	24.06
97	P131	339.2685248710373	34.43918753243254	7.34	5.51×10^{-15}	1.39×10^{38}	0.0008	30.48
98	P133	339.2689232772113	34.393213184040185	7.08	9.30×10^{-15}	2.34×10^{38}	0.0013	19.58
99	P135	339.2689039641369	34.43266288227842	8.58	6.81×10^{-15}	1.71×10^{38}	0.0009	16.2
100	P136	339.26855172052365	34.45341146366023	6.69	5.75×10^{-15}	1.45×10^{38}	0.0008	19.58
101	P138	339.26952938882954	34.401602668403015	8.74	1.08×10^{-14}	2.73×10^{38}	0.0015	19.52
102	P141	339.2695183593109	34.402960132031104	8.78	2.15×10^{-14}	5.42×10^{38}	0.003	21.96
103	P142	339.27045829894746	34.43489285177114	7.04	7.11×10^{-15}	1.79×10^{38}	0.001	18.1
104	P145	339.2714198328167	34.43242762988688	9.78	5.20×10^{-15}	1.31×10^{38}	0.0007	20.39
105	P146	339.27256480193705	34.42855831425452	8.16	1.20×10^{-14}	3.01×10^{38}	0.0017	18.92
106	P147	339.27271100025223	34.45705421	7.77	3.11×10^{-15}	7.81×10^{37}	0.0004	< 12
107	P149	339.2733176990918	34.42769979539784	8.65	9.63×10^{-15}	2.42×10^{38}	0.0013	21.5
108	P150	339.2734165817021	34.45591476130711	9.26	2.71×10^{-15}	6.81×10^{37}	0.0004	< 12
109	P153	339.27361616827534	34.43075313720044	8.15	1.55×10^{-14}	3.89×10^{38}	0.0021	22.21
110	P156	339.2744451093311	34.39897149678777	7.41	1.57×10^{-14}	3.94×10^{38}	0.0022	30.34
111	P165	339.27553866430907	34.438998912081864	7.53	1.17×10^{-14}	2.94×10^{38}	0.0016	27.95
112	P169	339.2764346842209	34.37474885791667	8.34	2.16×10^{-15}	5.43×10^{37}	0.0003	< 12
113	P170	339.27668302744667	34.35158063063088	7.81	6.95×10^{-15}	1.75×10^{38}	0.001	20.97
114	P172	339.27629994173566	34.424268678793815	7.82	6.89×10^{-15}	1.73×10^{38}	0.001	< 12
115	P174	339.27728099138614	34.35078560970485	8.12	7.73×10^{-15}	1.95×10^{38}	0.0011	17.81
116	P180	339.2776925145965	34.43864966270467	7.61	3.87×10^{-14}	9.74×10^{38}	0.0054	29.27
117	P184	339.27805578391946	34.40484153	8.37	1.01×10^{-14}	2.55×10^{38}	0.0014	17.54
118	P185	339.2786144895433	34.36546036	7.95	7.10×10^{-15}	1.79×10^{38}	0.001	15.21
119	P186	339.2785214070342	34.42006143739739	8.08	7.07×10^{-15}	1.78×10^{38}	0.001	22.04
120	P188	339.27938487573755	34.43575073696493	8.54	5.80×10^{-15}	1.46×10^{38}	0.0008	22.57
121	P189	339.27954017701944	34.35158272801949	7.69	8.08×10^{-15}	2.03×10^{38}	0.0011	17.85
122	P192	339.2802293239135	34,43588524119142	8.21	7.08×10^{-15}	1.78×10^{38}	0.001	25.56

 Table 2: HII regions continued

	Literature	RA	DEC	Radius 3σ	$H\alpha$ Flux	$H\alpha$ Luminosity	SFR (H α)	Dispersion
ID	ID	(J2000)	(J2000)	[arcseconds]	$[ergs/s/cm^2]$	[ergs/s]	$[{ m M}_{\odot}/{ m yr}]$	$[\rm km/s]$
123	P193	339.2810577066754	34.37406095060599	7.51	5.21×10^{-15}	1.31×10^{38}	0.0007	14.48
124	P198	339.2817119188547	34.36945602800752	7.35	6.78×10^{-15}	1.70×10^{38}	0.0009	17.66
125	P199	339.2821136251674	34.37819753060024	7.43	3.59×10^{-15}	9.03×10^{37}	0.0005	16.47
126	P200	339.2817805858021	34.35182846901407	8.66	1.14×10^{-14}	2.86×10^{38}	0.0016	18.78
127	P201	339.28209650728326	34.35617394781139	9.14	5.17×10^{-15}	1.30×10^{38}	0.0007	15.47
128	P203	339.28264692529507	34.38547008747002	7.57	7.14×10^{-15}	1.80×10^{38}	0.001	23.6
129	P205	339.2830714767444	34.35984689790715	7.73	8.65×10^{-15}	2.18×10^{38}	0.0012	21.71
130	P206	339.28298685384726	34.38035707511662	8.0	4.33×10^{-15}	1.09×10^{38}	0.0006	15.15
131	P207	339.2826450873894	34.41720056	6.91	7.50×10^{-15}	1.89×10^{38}	0.001	17.28
132	P208	339.2830990678638	34.384154389958084	7.78	6.94×10^{-15}	1.75×10^{38}	0.001	18.44
133	P211	339.28263578974617	34.429944892350605	6.71	4.97×10^{-15}	1.25×10^{38}	0.0007	19.64
134	P214	339.2843193501582	34.36120001501291	7.34	8.02×10^{-15}	2.02×10^{38}	0.0011	15.31
135	P215	339.2843043304915	34.35401644470021	9.56	6.36×10^{-15}	1.60×10^{38}	0.0009	19.7
136	P218	339.28486290596703	34.36191512786642	7.53	6.77×10^{-15}	1.70×10^{38}	0.0009	16.85
137	P219	339.28490493713184	34.36601614448407	7.38	3.20×10^{-15}	8.05×10^{37}	0.0004	16.57
138	P220	339.2850907264184	34.41735566814741	7.09	8.19×10^{-15}	2.06×10^{38}	0.0011	< 12
139	P222	339.28582676148966	34.41994075914723	7.19	5.52×10^{-15}	1.39×10^{38}	0.0008	19.68
140	P223	339.28704038522625	34.35815017077321	7.81	6.24×10^{-15}	1.57×10^{38}	0.0009	13.34
141	P224	339.2874592755719	34.35530952374468	7.19	5.08×10^{-15}	1.28×10^{38}	0.0007	13.99
142	P226	339.28751621465483	34.41110143470348	7.5	4.19×10^{-15}	1.06×10^{38}	0.0006	< 12
143	P229	339.2878414	34.375878041583405	7.54	4.32×10^{-15}	1.09×10^{38}	0.0006	13.79
144	P230	339.2885941279833	34.38761296688157	6.79	2.72×10^{-15}	6.85×10^{37}	0.0004	< 12
145	P236	339.2917935800056	34.38675073880019	7.3	3.29×10^{-15}	8.27×10^{37}	0.0005	18.49
146	P238	339.29268702843854	34.38079552941009	7.76	6.55×10^{-15}	1.65×10^{38}	0.0009	18.74
147	P239	339.2929539229114	34.38379279522877	6.62	3.81×10^{-15}	$9.59 imes 10^{37}$	0.0005	18.94
148	P240	339.29342493061944	34.34589808557353	6.98	8.29×10^{-15}	2.09×10^{38}	0.0011	17.37
149	P241	339.2935327467627	34.346740684014385	8.22	9.56×10^{-15}	2.41×10^{38}	0.0013	19.75
150	P242	339.2937898236852	34.366807339894095	6.88	1.80×10^{-14}	4.52×10^{38}	0.0025	23.41
151	P244	339.2938981003848	34.36821494548739	9.65	1.53×10^{-14}	3.85×10^{38}	0.0021	22.83
152	P245	339.29420012550304	34.350476629767655	8.14	5.16×10^{-15}	1.30×10^{38}	0.0007	12.24
153	P250	339.29459822041235	34.35115542523452	7.65	4.26×10^{-15}	1.07×10^{38}	0.0006	13.56
154	P251	339.29747107559655	34.36920287065264	6.69	5.00×10^{-15}	1.26×10^{38}	0.0007	13.13
155	EO18S001	339.2734292889596	34.41517416883838	8.76	5.73×10^{-14}	1.44×10^{39}	0.0079	29.81